Alteración de los ecosistemas

Las cadenas alimenticias tardan siglos en establecerse y equilibrarse; los componentes de un ecosistema son tan importantes que si faltara alguno, se rompería todo su equilibrio.

Por otra parte, los ecosistemas pueden sufrir alteraciones naturales y por acción humana: las alteraciones naturales forman parte del equilibrio natural y los ecosistemas generalmente se recuperan restableciendo el equilibrio; en cambio las alteraciones por acción humana son más peligrosas, se prolongan por mucho tiempo, abarcan grandes zonas y generalmente son irreversibles, produciendo la extinción de especies y la alteración del ambiente.

Algunos factores que alteran los ecosistemas

1. Desastres naturales como erupciones volcánicas, inundaciones, deslizamientos, vendavales, entre otros.

2. Tala indiscriminada de los bosques y el sobre pastoreo.

3. Caza ilimitada de animales.

4. La introducción de elementos extraños al ecosistema.

5. Contaminación ambiental, como los derrames de petróleo; derrames cloaca les crudos.

6. Aumento de la población con la construcción de casas, autopistas y ciudades.

7. La contaminación auditiva y el monóxido de carbono de los vehículos.

8. La no separación adecuada de las basuras (reciclaje).

9. El uso de los aerosoles y otras sustancias que desgastan la capa de ozono.

10. El uso inadecuado de la electricidad, ya que estos desgastan los embalses naturales lo cual contribuye al calentamiento solar.

CAMBIOS EN LOS ECOSISTEMAS A LO LARGO DEL TIEMPO

¿Qué se sabe acerca de la inercia de los ecosistemas y la velocidad de los cambios?
Esta cuestión trata de:

•Las escalas temporales del cambio: cuánto tiempo tardan en manifestarse los efectos derivados de un cambio en un ecosistema (también llamado desfase temporal).
•Inercia: el tiempo que tarda un ecosistema en responder a ciertos factores de cambio.
Muchos de los impactos, tanto positivos como negativos, que los seres humanos tienen sobre los ecosistemas tardan en manifestarse. Esto puede hacer que los costes asociados a los cambios actuales en los ecosistemas sean trasladados a generaciones futuras. Por ejemplo, el empleo de fuentes de agua subterránea puede superar la capacidad de recarga durante algún tiempo hasta que comiencen a aumentar sustancialmente los costes de extracción. En general, la gente gestiona los ecosistemas de tal forma que aumentan los beneficios a corto plazo sin tener en cuenta o ignorando los costes a largo plazo.

Los distintos servicios de los ecosistemas tienden a cambiar en escalas de tiempo diferentes, de forma que resulta difícil para los que gestionan evaluar correctamente las contrapartidas negativas de las decisiones. Por ejemplo, los servicios de apoyo (como la formación de suelo o el crecimiento vegetal) y los servicios de regulación (como la regulación del agua y de enfermedades) tienden a cambiar en escalas de tiempo mucho mayores que los servicios de provisión. En consecuencia, suelen pasarse por alto los impactos en aquellos servicios que cambian más lentamente.

El grado de inercia de los distintos generadores de cambio en los ecosistemas difiere considerablemente. La velocidad a la que reacciona un generador de cambio influye mucho en la rapidez con la que pueden resolverse problemas de un ecosistema una vez identificados. Algunos generadores de cambio, como la sobreexplotación de ciertas especies, presentan desfases temporales más bien cortos y el impacto del generador de cambio puede ser reducido o detenido rápidamente. La carga de nutrientes y especialmente el cambio climático presentan desfases mucho mayores de forma que los efectos de tales generadores de cambio no pueden reducirse en años o décadas. La extinción de especies debido a la pérdida de hábitat también presenta un gran desfase temporal. Incluso si se detuviese ahora la pérdida de hábitat, se tardarían cientos de años en conseguir que el nuevo número de especies alcance un nuevo equilibrio más bajo, en respuesta a los cambios de hábitat que ocurrieron en los últimos años.


Para algunas especies este proceso puede ser rápido, pero para otras, como es el caso de los árboles, puede llevar siglos. En consecuencia, reducir el ritmo de pérdida de hábitats sólo tendría un pequeño impacto en las tasas de extinción del próximo medio siglo, pero conduciría a beneficios sustanciales a largo plazo. Los desfases temporales entre la reducción de los hábitats y la extinción ofrecen una oportunidad a los humanos para restaurar hábitats y rescatar especies de la extinción

¿Cuándo ocurren cambios no lineales o abruptos en los ecosistemas?
La mayoría de los cambios en los ecosistemas y en sus servicios son graduales e incrementales, de forma que, al menos en principio, son detectables y predecibles. Sin embargo, existen muchos ejemplos de cambios no lineales y en ocasiones abruptos. Un cambio puede ser gradual hasta que una presión determinada en el ecosistema alcanza un umbral a partir del que ocurren cambios rápidos que llevan a un nuevo estado. Algunos cambios no lineales pueden ser muy amplios y generar impactos sustanciales en el bienestar humano. Las capacidades para predecir cambios no lineales están mejorando, sin embargo, en la mayoría de los casos, la ciencia aún no se capaz de predecir los umbrales exactos.

•Aparición de enfermedades contagiosas: una epidemia se propaga si se sobrepasa un cierto umbral de transmisión, esto es, si de media cada persona infectada contagia al menos a una persona más. La epidemia desaparece cuando la tasa de contagio es menor. Cuando las personas viven muy cerca unas de otras y en contacto con animales infectados, las epidemias pueden propagarse deprisa gracias a la interconexión y gran movilidad de la población mundial. La aparición casi instantánea del SARS en diferentes partes del mundo es un ejemplo de ese potencial, aunque una acción rápida y efectiva contuvo su propagación.
•Floración de algas y muerte de peces: la excesiva carga de nutrientes causa la eutrofización de ecosistemas costeros y de agua dulce. Si bien pequeños aumentos en la carga de nutrientes suelen causar sólo pequeños cambios en los ecosistemas, una vez que se alcanza cierto umbral, los cambios pueden ser abruptos y generalizados, causando explosiones en el crecimiento de algas. La eutrofización severa puede matar la fauna acuática al aparecer zonas con poco oxígeno.
•Colapso de pesquerías: los colapsos de poblaciones de peces han sido habituales tanto en pesquerías marinas como de agua dulce. Un nivel moderado de capturas suele tener un impacto relativamente reducido, pero una vez que aumentan las capturas se alcanza un umbral a partir del cual no quedan suficientes peces adultos para producir la suficiente descendencia que aguante tal nivel de capturas. Por ejemplo, las reservas atlánticas de bacalao procedentes de la costa este de Terranova colapsaron en 1992, causando el cierre forzado del caladero.
•La introducción y la pérdida de especies también pueden causar cambios no lineales en los ecosistemas y sus servicios. Por ejemplo, la pérdida de las nutrias marinas en numerosos ecosistemas costeros de la Costa Pacífica de Norteamérica debido a la caza condujo a un boom de las poblaciones de erizos de mar (especie que sirve de alimento para las nutrias) que a su vez originó la pérdida de los bosques de las algas kelp (que sirven de alimento para los erizos de mar).
•Cambios en las especies dominantes en los ecosistemas coralinos: algunos ecosistemas coralinos han pasado súbitamente de ser dominados por coral a ser dominados por algas. Semejantes cambios abruptos son básicamente irreversibles y una vez que se alcanza un umbral, ocurren en cuestión de meses. En los sistemas coralinos de Jamaica, siglos de pesca intensiva de especies devoradoras de algas contribuyeron a un cambio repentino a corales con poca diversidad, dominados por las algas y con muy poca capacidad para sustentar la vida de caladeros para la pesca.
•Cambio climático regional: la vegetación de una región influye en el clima ya que afecta a la cantidad de luz solar que se refleja, a la cantidad de agua que liberan las plantas en la atmósfera y a la cantidad de viento y erosión. En la región del Sahel, la cobertura vegetal está fuertemente relacionada con la cantidad de precipitaciones. Cuando hay vegetación, el agua de lluvia se recicla rápidamente, aumentando en general el nivel de precipitaciones y conduciendo, a su vez, a una mayor densidad de vegetación. La degradación de la tierra reduce el reciclaje de agua y puede haber contribuido a la reducción de las precipitaciones en la región del Sahel durante los últimos 30 años.
¿Cómo están aumentando los seres humanos el riesgo de cambios no lineales en los ecosistemas?
Los ecosistemas son resistentes a las alteraciones hasta alcanzar cierto umbral, es decir que son capaces de aguantarlas o de recuperarse de ellas. Los cambios que los seres humanos causan en los ecosistemas pueden mermar esta capacidad de resistencia y aumentar la probabilidad de que se den cambios abruptos en el sistema, con consecuencias importantes en el bienestar humano.

Las especies que integran un ecosistema pertenecen a distintos grupos funcionales. En cada grupo, diferentes especies pueden contribuir de forma similar a los procesos y servicios de los ecosistemas pero su respuesta a las fluctuaciones del medioambiente puede ser diferente. Esta diversidad en la respuesta permite a los ecosistemas ajustarse a los medioambientes cambiantes y mantener los procesos y servicios. La pérdida de biodiversidad que está teniendo lugar en estos momentos, tiende a reducir la resistencia de los ecosistemas.

Los cambios repentinos en ecosistemas no son excepcionales, pero se vuelven mucho más probables a medida que aumentan las presiones inducidas por el ser humano en los ecosistemas. Por ejemplo, a medida que la población humana gana en movilidad, más y más especies están siendo introducidas en nuevos hábitats, lo que incrementa el riesgo de que surjan plagas dañinas.

Una vez que un ecosistema ha sufrido un cambio no lineal, la recuperación hasta llegar a alcanzar el estado original es generalmente lenta, costosa y, en ocasiones, incluso imposible. Por ejemplo, el grado de recuperación de caladeros sobreexplotados después de su colapso y cierre es muy variable. La pesquería de bacalao de Terranova lleva cerrada casi 13 años y hay pocos signos que indiquen que se esté recuperando
Por el contrario, la pesquería de arenque del Mar del Norte se recuperó tras el obligado cierre de cuatro años a finales de los años 70 por el colapso debido a la sobreexplotación

LOS CICLOS BIOGEOQUÍMICOS

El concepto de ciclo biogeoquímico se usa para describir la distribución y transporte de materiales, los cuales controlan el recambio y transformación de éstos en los ambientes terrestres, acuáticos y atmosféricos. Los ciclos biogeoquímicos constituyen un sistema regulador de la hidrosfera y la biosfera. Estos ciclos describen los movimientos y las interacciones de los elementos químicos esenciales para la vida a través de la geosfera y la geosfera, a través de procesos físicos, químicos y biológicos. Los flujos de los elementos pueden ser abiertos, como el flujo de energía o cerrados, como el ciclo de la materia.

El ciclo de la materia es una interacción permanente entre la fase biótica y la fase abiótica, es un proceso sin principio ni fin; es decir, un reciclaje combinado y continuo, en una serie de procesos autorregulados; los deshechos son el punto de partida para formar algo nuevo.

Los principales elementos químicos son: carbono, hidrógeno, nitrógeno, oxígeno, fósforo, azufre o los contaminantes, los ciclos de estos elementos se combinan de diferentes maneras e interrelacionan entre sí. Un solo elemento puede convertirse en el factor limitante en el desarrollo de un ecosistema. Por ejemplo la oferta de nitrógeno puede limitar los procesos vitales en los océanos. La comprensión de los ciclos biogeoquímicos es esencial para entender el funcionamiento de la tierra como sistema.

Los ciclos se usan para medir la dinámica del recambio comparando las magnitudes en el depósito y los flujos en diferentes compartimentos del ecosistema. De particular interés son las escalas espaciales y temporales de las transformaciones y las fases de transición.

Los aspectos básicos de los ciclos biogeoquímicos son:

La distribución de materiales- localización y tamaño del depósito.
El transporte- patrones y ratas de flujo.
La transformación- rata de flujo del depósito a otro componente.
Tiempo de residencia- Tiempo de almacenamiento.
Los ciclos biogeoquímicos generalmente se conceptualizan en modelos de compartimentos y se visualizan convenientemente por medio de cuadros y flechas (fig. 45) Entre los 80 elementos que se encuentran en el suelo, sólo una tercera parte son componentes esenciales en plantas y animales. Entre los elementos principales que constituyen la materia orgánica tenemos: C, H, O, N, P, S, mientras que otros cumplen la función de matrices iónicas o estructuras de soporte: Ca, Mg, Si, K, Na, Cl, F). Los metales esenciales traza, se encuentran generalmente como coenzimas (Fe, Mn, Co, Cu, Zn, Se, Mo). Hay algunos elementos importantes que no se usan por los organismos: uno muy abundante es el aluminio y otros que son muy tóxicos como: Hg>Cd>Pb. La composición en elementos de la biomasa, el agua de mar y la corteza terrestre
El carbono, azufre y mercurio son elementos que han experimentado perturbaciones significativas de sus ciclos en las últimas 10 generaciones del hombre. Estos ciclos son de interés particular debido a que ellos cubren escalas espaciales grandes e incluyen una interacción de todas las esferas principales (atmósfera, hidrosfera, sedimentos, biosfera, pedosfera, litosfera) y las fases (gas, líquida y sólida) sobre un amplio rango de escalas de tiempo. Además, estos ciclos están fuertemente acoplados entre sí y pueden servir como ejemplo para demostrar la complejidad biogeoquímica de los ciclos en general y del impacto humano natural que da lugar a cambios ambientales importantes.

FLUJO DE ENRGIA EN LOS ECOSISTEMAS

¿Cómo utilizan los ecosistemas la materia y la energía?
Un ecosistema es uno de los «métodos» de este planeta que sirve para captar energía, y para utilizarla en las reacciones químicas de los seres vivientes.


Gracias a esta energía, los organismos viven; es decir, son capaces de desarrollar todas las reacciones químicas que intervienen en las funciones de relación, reproducción, nutrición...


Se dice que la energía fluye entre los seres vivos de un ecosistema porque se reutiliza una vez que alguno de aquellos la ha usado en sus reacciones químicas. Cuando esto sucede, la energía se degrada, pierde utilidad, transformándose en calor.


Por el contrario, los elementos químicos materiales siempre son útiles: son transferidos de unos a otros, reutilizados una y otra vez por todos y en el propio biotopo de cada ecosistema; se dice que siguen ciclos biogeoquímicos. Los ecosistemas son sistemas casi cerrados para la materia.

Intercambios entre biotopo y biocenosis
En cualquier ecosistema hay dos actividades vitales imprescindibles: la fotosíntesis (quimiosíntesis, excepcionalmente) y la descomposición-degradación. Mediante la primera se consigue incorporar materia y energía desde el biotopo hacia la biocenosis.


Los organismos descomponedores transfieren la materia desechada por los seres vivos (cadáveres, excrementos, fragmentos...) hacia el biotopo de su ecosistema y se aprovechan de los últimos restos de energía que quedan en ellos.


Desde el biotopo hacia los seres vivos
La fotosíntesis es el principal proceso bioquímico que consigue pasar materiales desde el biotopo hasta la biocenosis de un ecosistema. Una vez incorporados como parte de los organismos autótrofos, los heterótrofos (por ejemplo, los animales) solo tienen que aprovecharse de aquellos; con la existencia de pequeñas cantidades de agua, todo está preparado para que el ecosistema entero comience a funcionar. Además, siempre habrá animales depredadores, carnívoros, que seguirán aprovechando los materiales de otros.


Hay ecosistemas excepcionales (por ejemplo, las profundidades marinas) que carecen de vegetales productores porque no disponen de luz. Los encargados de conseguir materia a partir del biotopo son los microorganismos quimioautótrofos.


La desintegración
Los vegetales podrían terminar con los recursos del suelo al cabo de cierto tiempo; además, los cadáveres, excrementos, residuos, etc., podrían ir envenenando poco a poco el ecosistema. Estas son dos dificultades que los ecosistemas deben resolver para perdurar. Disponen de un buen método: la existencia de organismos descomponedores, especialmente en sus suelos, pero también en el agua o en los fondos acuáticos.


Descomponer es desintegrar, desordenar las uniones entre átomos y moléculas existentes en los restos de organismos. Al desorganizarlos, quedan libres y pasan de nuevo a ser parte del suelo, recuperándose así para un nuevo uso. Los hongos son algunos de ellos.


Los procesos de descomposición les proporcionan, además, cierta cantidad de energía, liberada al romperse dichas uniones entre átomos, la cual es suficiente para que vivan esos microbios. Existen otros muchos que no necesitan el oxígeno para vivir, sino que descomponen la materia orgánica (restos de seres vivos) en su ausencia; se les denomina anaerobios fermentadores. Por ejemplo, las bacterias del yogur o del queso son de este tipo.


Se cierran así los ciclos de uso de todos los elementos químicos que forman parte de los seres vivos de los ecosistemas. Prácticamente, toda la materia se recicla dentro de ellos. No se necesitan nuevas materias, porque tampoco se pierden. Es un constante trasiego desde el biotopo hasta la biocenosis y viceversa.